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The relative importance of different factors in the development of
human skills has been extensively discussed. Research on expertise
indicates that focused practice may be the sole determinant of
skill, while intelligence researchers underline the relative impor-
tance of abilities at even the highest level of skill. There is indeed a
large body of research that acknowledges the role of both factors
in skill development and retention. It is, however, unknown how
intelligence and practice come together to enable the acquisition
and retention of complex skills across the life span. Instead of
focusing on the 2 factors, intelligence and practice, in isolation, here
we look at their interplay throughout development. In a longitudinal
study that tracked chess players throughout their careers, we show
that both intelligence and practice positively affect the acquisition
and retention of chess skill. Importantly, the nonlinear interaction
between the 2 factors revealed that more intelligent individ-
uals benefited more from practice. With the same amount of
practice, they acquired chess skill more quickly than less intelligent
players, reached a higher peak performance, and arrested decline
in older age. Our research demonstrates the futility of scrutinizing
the relative importance of highly intertwined factors in human
development.
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To claim that both intelligence and practice are necessary for
the acquisition and retention of complex intellectual skills

is hardly controversial. There are numerous studies demon-
strating that outstanding performance (i.e., expertise) is posi-
tively related to individuals’ general intellectual capacity [i.e.,
intelligence (1, 2)]. It is also known that thousands and thou-
sands of hours of focused practice are necessary to become an
expert in a domain (3, 4). Beyond acknowledging the impor-
tance of both factors, however, their relative contributions and
interplay across development are still unclear and disputed (5).
A prime example of such a controversy is the long-standing
debate between researchers working on expertise and those
studying intelligence. While expertise researchers have re-
peatedly argued that domain-specific practice is the sole de-
terminant of expertise (6), intelligence researchers continue to
emphasize the predictive value of intelligence for educational
(7) and occupational attainment (8) even at exceptional per-
formance levels (9). Against this background, there have been
calls for comprehensive studies examining how these 2 factors
come together in expertise development (10, 11). So far, such
studies have been sorely lacking. Here, we show how intelli-
gence and practice influence the development of expertise
across the life span. Specifically, within the prototypical ex-
pertise domain of chess, we not only demonstrate that both
factors positively influence the acquisition and retention of
expertise, but also unravel how they interact with each other.
The more intelligent the chess players were, the more they
gained from the same amount of practice, even at the later
stages of their career.

Expertise Mechanism and Its Relation to (Deliberate)
Practice and Intelligence
Chess is the perfect domain for testing the influence of in-
telligence and practice on the development of intellectual skills
across the life span. It is a deceptively simple game with a con-
strained environment and fixed rules. It is relatively easy to learn,
but, as anyone who actively pursues it can attest, difficult to
master. The sheer number of possible moves and configurations
has even led to claims that there are more combinations in chess
than there are atoms in the universe (12). The way the human
mind deals with this jungle of possibilities is to pick up the in-
evitable regularities that arise in such demanding domains. In-
formation about the main features of the domain and the typical
relations between them, often called chunks or templates (13,
14), is the core of experts’ domain-specific knowledge stored in
long-term memory. Armed with thousands and thousands of
such chess patterns, chess experts can quickly grasp new posi-
tions because they have accumulated combinations of chess
pieces that are similar to the situation at hand, as well as ways of
dealing with such situations (for theoretical accounts based on
high-level cognition, see refs. 15–17).
The expertise mechanism based on domain-specific knowledge

is well established in chess and other expertise domains (11). It is
undisputed that the acquisition of this knowledge requires ex-
tensive immersion in the domain. An extreme environmentalist
view is advocated within the expert performance framework (3),
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in which it is postulated that certain types of practice are not only
necessary for attainment of expertise, but also sufficient. Deliberate
practice, which is defined as focused activities aimed at improving
deficiencies in performance, would be the sole determinant of the
attained expertise level. The more time an individual engages in
such practice, the higher the domain-specific performance should
be. As practitioners acquire more domain-specific knowledge
through deliberate practice, other factors such as intelligence are
assumed to continuously lose their importance. In the final, ex-
pert stage, performance would rely exclusively on the domain-
specific knowledge acquired through deliberate practice. The
assumption of a diminishing role of intelligence in expertise
development is also seemingly compatible with the theory of
ability determinants of skilled performance (18). In consistent
tasks in which stimulus–response associations remain constant,
general cognitive abilities gradually lose their impact on per-
formance as task execution becomes increasingly automated.
The link between deliberate practice and domain-specific

performance has been corroborated by several correlational
studies in different expertise domains (4). In chess, deliberate
practice is typically defined as individual study of chess material.
A meta-analysis revealed that 34% of variance in playing
strength (average corrected r = 0.57) could be explained by the
amount of deliberate practice (19). However, there is no support
for the view that only deliberate practice determines experts’
performance. The correlations of playing strength with the
amount of group practice activities, such as playing tournament
games, were found to be almost equally as strong (r range be-
tween 0.26 to 0.54) as the correlations with the amount of in-
dividual practice (r range between 0.42 and 0.54; ref. 20). More
importantly, chess players varied greatly as to how much prac-
tice, deliberate or any other, they needed to reach expertise
levels. One study, for instance, reported that players required
between 3,000 and 23,600 h to attain the master level (21). The
amount of (deliberate) practice explains a large chunk of chess
expertise, but there also seem to be other factors that influence
expertise development.
One such factor is intelligence. Theories of intelligence pos-

tulate that intellectually more able people will inevitably be
better at mastering the problems resulting from complex in-
tellectual domains (22, 23). Thanks to their higher speed of in-
formation processing and working memory capacity, brighter
people will acquire domain-specific knowledge faster than their
less able peers. In the case of chess expertise, this may mean
more efficient grouping of smaller pieces of knowledge into
larger units (13, 14). A recent meta-analysis (1, 24) indeed
demonstrated that more intelligent individuals tend to play
better chess (average r = 0.22, or 5% of variance explained).
However, the link between intelligence and chess skill was par-
ticularly pronounced in children (average r = 0.31) and at lower
levels of expertise (unranked samples: average r = 0.33). Much
lower correlations were found in adults (average r = 0.04; not
significant) and at higher expertise levels (ranked samples: av-
erage r = 0.10; not significant). This finding may indicate that
intelligence is differentially important at various phases of ex-
pertise development. In addition, not all components of intelli-
gence were associated with chess skill. Visuospatial intelligence
showed almost a null correlation (average r = 0.08; not signifi-
cant). Similarly, verbal intelligence was not predictive of chess
performance (average r = 0.12; not significant). Only numerical
intelligence turned out to be highly relevant in most of the in-
cluded studies (average r = 0.34, or 12% of variance explained).

Current Study
The present body of evidence shows clear links between expert
performance and both intelligence and practice. However, most
of the studies examined the role of these factors separately and
looked only at 1 time point in the expertise acquisition process.

None of the studies explicitly investigated the relevance of both
factors as well as their interaction across long-term expertise
development. In the current study, we examined the individual
and joint influence of intelligence and practice across the life span.
We tracked 90 chess players across their careers. Chess players

were of different expertise levels and age at the time of testing.
This enabled us to cover the whole range of the skill develop-
ment trajectories, starting from younger age, to the point when
they reach their peak, and in older age when their skill starts to
deteriorate. We made use of 2 of the aspects of chess that make
it a popular choice for the investigation of expertise development
(25, 26). First, unlike in many other expertise domains, chess skill
is measured by an objective measure, called the Elo rating (27).
Elo takes into account official games in tournaments and is a
reliable and valid measure of expertise (25). Second, chess as a
domain offers accurate records of tournament games played,
which can be taken as an approximation of practice (28). From
official records, we collected 20 y of Elo ratings per player and
the number of games played in each year, producing over 1,800
data points. All players were tested on 3 components of in-
telligence (i.e., numerical, verbal, and figural intelligence) and
general intelligence, a measure derived from the 3 components
(29). These intelligence components were distinguished in previ-
ous studies on the role of intelligence in (chess) expertise (1, 29).

Results
The raw data illustrate that players develop chess skill rapidly at
the beginning until they reach the peak of performance at around
35 y (Fig. 1). After a few years of peak performance, players’ skill
starts to slowly decline.
To provide a general model of development over the life span,

we modeled the data using generalized additive models (GAMs)
(30). GAM is a nonlinear, data-driven method that fits a smooth
function that most optimally describes the data (for a more
traditional longitudinal linear multilevel model, see SI Appendix).
Unlike linear models, nonlinear models enable us to capture
systematic deviations from a straight line. This allows us to inves-
tigate hypotheses of persistent influence of intelligence throughout
the life span. The additive effects of intelligence or practice on
chess performance may not necessarily be linear at all times of life
and stages of expertise. Should there indeed be any kind of influ-
ence of intelligence or interplays between intelligence and practice
at higher levels of expertise, nonlinear models are arguably the
most suitable way of capturing them (for more details, see ref. 31).
Once we fitted the basic model with age (Table 1), we turned

to adding individual components of intelligence and practice

Fig. 1. Raw data of age-related changes in chess skill. The red line illustrates
the average model data (Table 1, model 4) across the life span, that is, the
effect of age once numerical intelligence and practice have been controlled
for. The red shading around the line indicates 95% error of the estimate. M,
average; Nobs, number of observations; Nplayers, number of players; Num
Intelligence, numerical intelligence (raw scores, age-standardized numerical
IQ M = 116, SD = 14); Practice, games played (per year).
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(i.e., games played) separately (model 2a and model 2b). Nu-
merical intelligence had the strongest effect of all measured
intelligence types, followed by verbal intelligence and general
intelligence derived from the 3 scales. Figural intelligence did
not significantly explain chess expertise across age (SI Appendix).
Numerical intelligence (Fig. 2A) and practice, as measured by
the number of games played (Fig. 2B), showed beneficial effects
on the level of performance. The more games players played and
the more intelligent they were, the better their performance was.
Both factors explain the development and retention of chess

skill. Compared with the model that features only age (model 1
in Table 1), numerical intelligence alone explains an additional
17% of results (model 2a). Similarly, practice alone explains the
same amount of deviance, a measure similar to unadjusted var-
iance (17%; model 2b). However, numerical intelligence and
practice had differential effects on performance at different age
levels of the players. Numerical intelligence was most beneficial
in the middle of the life span, around 35 y, when the chess
players were reaching the peak performance (Fig. 3A). Likewise,
at the later postpeak stages until age 70, individuals also
benefited from numerical intelligence. Take for example, 2 hy-
pothetical groups of players (Fig. 3 A, Right), one with a score of
30 on numerical intelligence (around 100 standardized score,
IQ) and another one with a score of 55 (IQ 120). They will both
have around 1,700 Elo at age 15 but already starting from age 20,
the more numerically able players will improve faster. They will
eventually achieve a peak rating of 2,050 at age 35, compared to
the peak rating of 1,900 at the same age for the numerically less
able players. When they both reach age 70, the numerically more
able players decline less (to 1,900) than the less numerically able
players, who drop to 1,700.
Practice, on the other hand, was particularly beneficial at the

beginning and toward the end of the life span (Fig. 3B). People
who play 60 games per year will already at age 15 have a rating far
superior to that of people who plays 20 games (2,000 vs. 1,600; Fig.
3 B, Right). At the peak, the age of around 30, the difference is still
pronounced: rating over 2,200 for the people who play 60 games,
in contrast to a rating of under 1,900 for the people who play 20
games. When they are 70 y old, playing 60 games a year would
yield a rating of almost 2,100, whereas 70 y olds who play 20 games
would have a rating of 1,900.
The different explanatory power of numerical intelligence and

practice at different stages during players’ development was also
evident when we added both factors into our model. The expla-
nation of data improved from 27% when either numerical intel-
ligence or practice alone was included in the model, all of the way
to 42% when both were included (compare model 3 with model
2a or 2b).
The beneficial effects of combining numerical intelligence and

practice in order to account for performance was also evident in
their close interaction across development. Adding the interaction
to the model explained additional variance, bringing the explained
variance to 47% (Fig. 3; model 4 in Table 1). In other words, more
numerically able participants benefited significantly more from the

same amount of practice than their numerically less able colleagues.
This was not the case for verbal and general intelligence (SI
Appendix).
In order to illustrate this interaction, we provide snapshots of

how intelligence and practice influence performance at different
age levels: 1) early, at age 20 (Fig. 4A), 2) at the peak at age 35
(Fig. 4B), and 3) late, at age 70 (Fig. 4C). As a general rule, when
they play the same number of tournament games, the players
with higher numerical intelligence develop chess skill more
quickly. For example, at age 20 (Fig. 4A), players with numerical
intelligence of 55 (IQ 120) will benefit more from the same
amount of practice at lower levels of practice than players with
numerical intelligence of 30 (IQ 100). More practice will in-
evitably mean fewer differences between the 2, hypothetically
more and less numerically, able player groups. This is the case
until the very high level of practice (over 60 games) when the
more numerically able players will again benefit more than less
numerically able players (Fig. 4 A, Right).
The same interaction is found when we look at age 35, when

the players reach peak performance (Fig. 4B). The difference in
the level of improvement achieved for a given amount of practice
between players with numerical intelligence of 55 and players with
numerical intelligence of 30 is particularly pronounced at the
lower levels of practice. It almost disappears at higher levels of
practice until it again reappears at the highest levels of practice.
The situation is even more drastic in later stages when players

need to maintain their expertise (Fig. 4C). The differences be-
tween players with scores of 55 and 30 on numerical intelligence
increase with the amount of practice.
An interactive figure that illustrates the interplay between in-

telligence and practice across the complete life span (for every single
year) is hosted at the following link: https://nemanjavaci.shinyapps.io/
3dinteraction/.

Discussion
The present findings corroborate the assumption that both in-
telligence and practice are, unsurprisingly, important factors in
expertise acquisition and retention when considered separately.
However, their explanatory power lies in the way in which they

Table 1. Models explaining the development and retention of chess skill

No. Model AIC BIC Deviance explained, %

1 Age (L and N) 24,965 25,014 10.7
2a Age × Intelligence (N) 24,602 24,686 27.3
2b Age × Practice (N) 24,613 24,721 27.4
3 Age × Intelligence + Age × Practice (N) 24,227 24,389 41.9
4 Age × Intelligence + Age × Practice + Intelligence × Practice (N) 24,095 24,353 47.0

The basic model starts with individual players and their age variable (model 1). That model is then used to add numerical intelligence
(model 2a) and practice (model 2b) in isolation. Model 3 brings both factors together. Finally, model 4, which adds the interaction to
model 3. Note: AIC, Akaike’s information criteria; BIC, Bayesian information criteria; L, linear effect of the predictor; N, nonlinear effect.

Fig. 2. The average effects of numerical intelligence (A) and practice (B) on
chess skill (Elo rating).
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complement each other. Individually, they can explain only certain
parts of the developmental curve. Together, they explain the changes
much better across the whole life span, accounting for about 47%
of variance.
Practice has its strongest effect in the beginning of expertise

development (Fig. 3B). One possible reason is that, at this point,
when there is little accumulated knowledge, almost every explora-
tion uncovers useful information. As people acquire more infor-
mation concerning the domain and their knowledge base increases,
it becomes more difficult to discover new ways of dealing with
challenging situations that would improve performance. This prin-
ciple of diminishing returns, which is at the core of skill acquisition
theories (32) and the power law of practice (33), may also go a long
way toward explaining the particularly beneficial influence of
practice at the start of expertise development in our study.
The same theoretical principle should be applicable to intel-

ligence, where more capable players build their knowledge
structures faster (22, 34). We found that numerical intelligence
influences performance throughout the whole life span, but its
strongest effect is at the age at which most players reach their
peak performance. This finding disproves a long-held belief that
intelligence is important at the beginning of the skill acquisition
process and that its influence wanes in later stages (3, 6, 18). It
also goes against theoretical considerations in which the already
accumulated knowledge base, the main mechanism behind ex-
perts’ outstanding performance (11, 13), leaves little for other
factors to explain (3).
Many expertise domains, including chess, are so complex that

it is humanly impossible to master them fully. No matter how
much knowledge experts possess, there will always be situations
that are not similar enough to previously encountered instances
and therefore require adaptive behavior. In other words, even
the best practitioners will be forced from time to time to fall back
on general reasoning abilities, a hallmark of intelligence (22).

The evidence for this consideration comes from skill acquisition
research (18, 35), which distinguishes between consistently mapped
tasks (e.g., rotary pursuit task) and inconsistently mapped tasks
(e.g., air traffic control, where new situations regularly occur).
Intelligence influences skill acquisition only at the beginning for
consistently mapped tasks, but it remains an important predictor of
skill throughout the whole period for inconsistently mapped tasks
(36). Chess may in many ways be a consistent environment because
of its fixed rules. Expert players may also learn how to deal with
many reappearing situations. However, the sheer number of possible
constellations are bound to produce less familiar situations. Although
many components of chess expertise may have automated aspects
akin to consistent tasks in skill acquisition literature, some aspects of
chess expertise may remain beyond the reach of automatization. This
theoretical explanation leaves the door open for the influence of
intelligence beyond the beginning of expertise development.
Our study confirmed that figural intelligence has a limited

impact on expertise development (SI Appendix). Although this is
in line with recent meta-analytic results (1, 21), it may come as a
surprise given the visuospatial nature of chess. However, the
stereotype of chess masters who imagine extended continuations
of moves on a mental board in their mind is inaccurate (37). The
mental imagery in chess is much more abstract and is never a
replica of the physical environment. This fact may also explain
why verbal intelligence is related to chess expertise in our study.
Being able to grasp relations and verbalize them explicitly is a big
part of any expertise, including chess, which has a specific coded
language (e.g., single labels for typical strategies and openings
that pack a wealth of information). Most important, however,
was numerical intelligence, which has also been demonstrated in
the previous meta-analysis (1, 24). Chess may be a visuospatial
domain on the surface, but it is full of numerical relations. The
chessboard has clearly specified numerical properties; the relations
in chess are numerical in nature (e.g., a rook is stronger than a

Fig. 3. The nonlinear effects of (A) numerical intelligence and (B) practice across the life span. The colors in the left-hand panel graphs indicate the Elo rating,
with paler and brighter colors representing lower and higher scores, respectively. The white patches in A and B indicate that there was not enough data for
the model to be estimated. Data are from model 2a and model 2b in Table 1. The right-side panel graphs present hypothetical ratings across the life span of
(A) players who have 30 and 55 scores on numerical intelligence, and (B) players who play 20 and 60 games.
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knight for exactly 2 units/pawns), and those numerical relations play
a considerable role when estimating whether a chosen move is
worthwhile. Precisely these “calculations,” where chess experts have
to estimate the situation a few moves down the line, may be where
numerically more able chess players reap higher benefits. The actual
solution may stem from vast knowledge about similar situations, but
chess experts still need to examine their initial intuition.
Together with age, our 2 factors explained a remarkable 47%

of variance in chess performance. This is particularly impressive
given that our proxy measure of practice was based on the
number of tournament games. The officially played games are
only 1 type of practice activity that can be important for expertise
development (20). Deliberate practice in chess (i.e., studying
alone) may not be the only explanation for the differences among
experts (3), but it is certainly a relevant factor that future studies

should take into account. Chess players generally tend to immerse
themselves in the domain long before they actually play any offi-
cial games. Accounting for this early period and different aspects
of activities in general may paint an even more accurate picture of
the influence of practice on expertise development. Similarly,
other factors such as motivation, starting age, and personality may
also prove to influence directly or indirectly (e.g., through prac-
tice) intellectual performance throughout the life span (10, 11).
Despite these limitations, our study confirms one of the central

tenets of virtually all intelligence theories—more intelligent people
should benefit more from the same amount of practice than less
intelligent people (22, 23, 38). This claim has proved to be rather
difficult to demonstrate even for simple skills (39, 40). Our study
goes beyond this and demonstrates the interaction between
intelligence and practice in a complex intellectual activity such as

Fig. 4. Nonlinear interaction of numerical intelligence and practice at (A) age 20, (B) age 35, and (C) age 70. The colors in the left-hand panel graphs indicate
the Elo rating, with paler and brighter colors representing lower and higher scores, respectively. The right panel shows hypothetical ratings of 2 groups of
players, one with a score of 30 (around 100 in standardized scores) on numerical intelligence (blue solid line), and another with a score of 55 (around 120 in
standardized scores; red interrupted line), depending on how much they practice.
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chess. Practice, for example, does not in itself guarantee the mainte-
nance of skill in old age in numerically less intelligent players (Fig. 4C).
Above all, our study underlines how unfruitful it is to focus on

a single factor in the development of human skill. Intelligence
and practice are intertwined, thus making it difficult to separate
the 2 and pinpoint the exact influence of each factor. Instead, it
is much more advisable to identify the circumstances that may
help people to acquire and retain important skills.

Methods
Participants. Ninety (90) active tournament chess players from Austria
[M(age) = 36.23, SD = 13.29, range = 15 to 65 y, when tested on intelligence
in 2003 and 2004] took part in the study (29). They were recruited through
announcements at Austrian chess clubs and local tournaments, offering the
opportunity to obtain information about their individual test results. All
participants gave written informed consent that their data can be used for
research purposes and be published in anonymous form. The research pro-
tocol was approved by the Research Management and Service as well as by
the Institute of Psychology at the University of Graz.

Chess Data. Players’ chess skill and practice data were extracted from the publicly
accessible Austrian chess database (www.chess-results.com). We used the Elo ratings
as an indicator of chess skill and the number of tournament games as an indicator of
chess practice. The Elo ratings are regularly (every 6 mo) computed based on the
players’ tournament outcomes and can be considered a highly reliable and valid
measure of chess expertise (for details, see refs. 27 and 29). They typically range from
800 (in beginners) to about 2,850 (the current world champion, Magnus Carlsen).
The Elo ratings and number of tournament games per year were collected from
1994 to 2016 (23 time points) for each player in the sample. The entrance level
for obtaining the Elo rating, i.e., the lowest rating possible, has varied over the
years. Currently, it is 800 points, but at the time of testing it was 1,200 points.

Intelligence. Participants’ intelligencewas assessed in the years 2003 to 2004 using
a well-established German intelligence structure test, IST-2000R (41). This test can
be administered to individuals from age 15 with no upper limit and captures 3
content components of intelligence (i.e., verbal, numerical, and figural) as well as
general intelligence (reasoning; based on the 3 content components) with high
reliabilities (Cronbach’s alphas for verbal, 0.88; numerical, 0.95; figural, 0.87; and
general, 0.96; ref. 41). The content components have consistently been found in
different theories of intelligence structure (42–44). Each component is measured
by means of 3 subscales (each consisting of 20 items): verbal intelligence (sentence
completion, verbal analogies, finding similarities), numerical intelligence (arithmetic
problems, number series, arithmetic operators), and figural intelligence (figure
selection, cube task, matrices). The results on the relationship between intelligence
and Elo ratings at the time of testing were published in a previous study (29).

Descriptive Analysis. The descriptive statistics with intercorrelations can be
found in SI Appendix, Table S1. For the analyses, the raw scores of the intel-
ligence scales were used (also presented in SI Appendix, Table S1).

Data Analysis. Preliminary data screening was performed to ensure that
potential data entry mistakes were eliminated. We followed the procedure
from previous studies (28, 45, 46) and restricted the tails of the age distri-
bution. In the case of this study, we excluded players under 10 y and over
80 y when presenting the modeling results (Fig. 1).

The data were analyzed using 2 different modeling approaches. For the
main analysis, we used GAMs, while for the triangulation of results, we used
linear mixed-effect regression with specified polynomial terms across the age,
which is a standard approach in expertise researchwhenmodeling time changes.

GAMs. The GAM is a data-driven method designed to estimate the nonlinear re-
lation between covariates and the dependent variable. A GAM replaces the usual
linear function of a covariate with an unspecified smooth function: yi = fðxiÞ+ ei.

The model is nonparametric in the sense that we do not impose a parametric
formof the function (e.g., linear, quadratic, or cubic function), butweareestimating
it in an iterative process (47). To estimate the nonlinear effect or form of the
function, the model needs to estimate the space of functions that can represent f
in the equation. This is usually termed the basis function (47). For example, if we
believe that the relationship between predictor and outcome is a fourth-order
polynomial, then the space of polynomials of order 4 and below contains f. The
basis of the function is then summed over all individual polynomial terms up to the
fourth-order polynomial, and the relation between predictor and dependent
variable can be represented by such a structure, e.g., a sigmoidal curve. In contrast
to the standard linear model, in GAMs we do not have to specify the basis of the
function (polynomial terms, cubic splines, etc.), as this type of modeling itera-
tively optimizes the smooth function (basis) and proposes an optimal structure
between dependent and independent variable. In addition to the univariate
nonlinear basis estimation, in the case of this study we used tensor product
smooths to investigate and illustrate interactions between age, practice, and
numerical intelligence: yi = fðxi , zi , tiÞ+ ei. The GAMs estimate complex non-
linear interactions in a similar manner to the univariate function, where non-
linear interactions are governed by basis of the functions for x (Practice), z
(Intelligence), and t (Age). The nonlinear effect is a superposition (joint effect)
between these 3 variables, by assuming that this complex nonseparable func-
tion f(x, z, t) can be approximated by the product of simpler functions fx(x), fz(z),
and ft(t) at sufficiently small intervals across values for each of the variables.

The results of the GAM cannot be interpreted in the standard linear regression
terminology, i.e., change in the outcome dependent on the 1-unit change in
independent variable. TheGAMsprovide information about thewiggliness of the
regression line (summarization of all individual functions), andwhether the line is
significantly different from zero. As in the case ofmost data-driven and nonlinear
methods, the visualization is a necessary tool when interpreting the results.
Age, practice, and numerical intelligence. In the case of the final model (model 4
in Table 1), we included age, practice (number of played games per year),
and numerical intelligence in the model as the independent variable and Elo
rating as the dependent variable in the mgcv package in R (30). We specified
the linear and nonlinear effect for all predictors, as well as the nonlinear
interactions between them.

The summary of the model is presented in SI Appendix, Table S2 with 2
separate outputs: parametric coefficients and smooth terms. The parametric
coefficients in the case of this analysis show the linear effects of the included
predictors. In the case when nonlinear effects are not included in the analysis,
the parametric coefficients are identical to a standard linear or linear mixed-effect
model. The nonlinear interaction and main nonlinear effect are represented in the
second section of the table by te(Age, Practice, Intelligence) syntax. The results show
significant nonlinear interaction between the practice and numerical intelligence
across the lifetime. These nonlinear surfaces show the interactive influence of
practice and intelligence on the development of performance (Elo rating) across the
life span. Finally, the results show the adjusted R2 and explained deviance, as well as
the restricted maximum likelihood score, which is used to model selection criteria
(i.e., lower values indicate better fit of themodel). Before arriving at the final model,
we investigated the influence of intelligence and practice separately. We first fitted
the basic model that starts with player’s age (model 1). We used model 1 to add
various types of intelligence (model 2a for numerical intelligence) and practice
(model 2b) in isolation. See SI Appendix for the analysis of other intelligence types as
well as for corroboration of the results using a differentmodeling approach, namely
linear mixed effects. The additional information on the interpretation of the
territory maps (Figs. 3 and 4) can also be found in SI Appendix.

Data and Materials Availability. In order to protect the privacy of individuals
involved in the study, the data cannot be shared publicly. However, requests
will be considered for addressing specific research questions while main-
taining the anonymity of the subjects.

The online materials can be retrieved from https://osf.io/k8w6g/.
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25. N. Vaci, M. Bilalić, Chess databases as a research vehicle in psychology: Modeling large

data. Behav. Res. Methods 49, 1227–1240 (2017).
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